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Abstract 
 

We use administrative microdata from six states to study academic mobility in K-12 education, by which we 

mean the extent to which students’ ranks in the distribution of academic performance change during their 

schooling careers. We find that there is substantial heterogeneity across districts in the academic mobility of 

students. The heterogeneity across districts is largest in terms of absolute mobility—i.e., in some districts, 

students throughout the distribution, including initially low performers, gain on other students in the 

statewide distribution, and vice-versa—whereas there is less cross-district variation in relative mobility. The 

most prominent correlates of high-mobility districts include value-added to achievement and the 

socioeconomic status of the student population. 
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1. Introduction 

A number of studies examine the degree to which early cognitive and non-cognitive 

characteristics, including measures of achievement and engagement, predict long-term outcomes 

such as later test achievement, high school course-taking, high school graduation, college-going and 

labor market earnings.1 Evidence shows that the large gaps in test achievement between advantaged 

and disadvantaged students, evident at the elementary level, continue to persist throughout students’ 

K-12 educational careers (Betts, Zau and Rice, 2003; Clotfelter, Ladd and Vigdor, 2009; Reardon, 

2011; Goldhaber et al., 2018). However, research also shows that school and teacher quality matter 

for educational achievement (Rivkin, Hanushek, and Kain, 2005; Chetty, Friedman, and Rockoff 

2014; Jackson, Johnson, and Persico, 2016; Jackson 2018; Brunner, Hyman, and Ju, forthcoming), 

which implies that differences in school quality can impact (positively or negatively) the degree of 

persistence of students’ early-grade outcomes. 

Yet while there are numerous studies that examine the effects of specific educational 

interventions, the literature on the scope for schools and districts to influence student academic 

mobility broadly within the performance distribution is surprisingly thin. Jang and Reardon (2019) 

document the extent to which test achievement for cohorts of students changes as they progress 

from grades 3 to 8 in states and school districts. They show that in most states higher-SES students, 

who already outperform lower-SES students by the third grade on state tests, continue to gain on 

lower-SES students through the eighth grade.2 Jang and Reardon (2019) also show that there is 

considerable heterogeneity across states in the rate of at which achievement diverges by SES.  

                                                 
1See, for instance, Murnane, Willett and Levy (1995), and Cawley, Heckman, and Vytlacil (2001), Cunha et al. (2006) 

Todd and Wolpin (2007). 
2 They use student achievement data from the Stanford Education Data Archive (SEDA), which contains about 11,000 

school districts. 
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To date, however, little is known about how much variation exists across individual districts 

in the expansion or reduction of achievement gaps and what district characteristics might contribute 

to or predict district differences in this regard. Using state-level administrative microdata from six 

states, and couched within an “academic mobility” framework, we explore district-level 

heterogeneity in the extent to which students’ academic performance in the third grade maps to their 

own longer-term educational outcomes through high school. 

Our analytic framework is based on tools developed in recent work on intergenerational 

economic mobility by Chetty, Hendren, Kline, and Saez (CHKS, 2014) and Chetty, Hendren, Jones, 

and Porter (CHJP, 2018).3 CHKS and CHJP document children’s and their parents’ economic 

mobility over time, assessing whether families are economically mobile and how this varies by 

geographic place in the United States. In our application, we use detailed student-level data to 

construct measures of intragenerational academic mobility for recent cohorts of students. We focus 

on how achievement in the third grade maps to the following longer-term educational outcomes: 

eighth grade test performance, performance on high school end-of-course exams and the ACT, and 

high school graduation, on-time and within one year of on-time. Following CHKS and CHJP, our 

test-based measures of academic mobility are based on the rank-rank relationships between 

performance percentiles in third grade and performance percentiles on the later tests. These 

measures describe the extent to which students’ late-grade placements in the outcome distribution 

are pre-determined based on early-grade performance, and allow us to assess how distributional 

“stickiness” varies across schooling systems. For graduation outcomes, our mobility metrics 

measure graduation rates for students who start at different points in the early-grade achievement 

distribution. 

                                                 
3 In turn, these studies build on a large prior literature on economic mobility—for reviews see Black and Devereux 

(2011) and Solon (1999). 
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Like in CHKS and CHJP, our access to student-level data facilitates the division of total 

mobility into its two subcomponents: absolute mobility and relative mobility. Our measures of 

relative mobility answer the following question for each district “Do initially low-achieving 

students gain in the district performance distribution compared to initially high-achieving students 

during the K-12 career?” Alternatively, our measures of absolute mobility answer the question “Do 

initially low-achieving students in the district gain in the statewide performance distribution during 

the K-12 career?”4 Disentangling these two sources of mobility is an important first step toward 

understanding what drives district-level variation in academic mobility. 

In what follows, we first summarize academic mobility across outcomes in our sample states 

and how patterns of mobility vary by student race/ethnicity, socioeconomic status, and the 

urbanicity of the school attended in the third grade. We then show that there is statistically and 

economically meaningful heterogeneity in academic mobility across school districts within states. 

The heterogeneity is driven primarily by differences across districts in absolute mobility, and less so 

by differences in relative mobility. We also identify the characteristics of districts that predict 

greater academic mobility. The two most prominent predictors are districts’ value-added to 

achievement (estimated out of sample) and the socioeconomic status of students, primarily as 

measured by free and reduced-price meal eligibility. In future extensions we will link our place-

based intragenerational academic mobility metrics to location-matched intergenerational economic 

mobility metrics published by CHKS, which will allow us to empirically explore the connections 

between these two types of mobility. 

                                                 
4 Both a student’s absolute position in the performance distribution and a student’s relative position within a class, 

school, or district are important outcomes of interest. A student’s absolute position is important given causal evidence 

on the link between test scores and later life outcomes (Goldhaber and Ozek, 2019). There is also increasing evidence 

that a student’s relative rank has independent effects on student behaviors and outcomes, as social comparisons help to 

shape ability beliefs. See, for instance, Cicala et al. (forthcoming), Denning et al. (2018), Elsner and Insphording 

(2017a, 2017b), Elsner et al. (2019), and Murphy and Weinhardt (2018). 
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2. Data and Measurement of Academic Mobility 

2.1 Data  

We use state administrative microdata from public schools in six states—Massachusetts, 

Michigan, Missouri, Oregon, Texas, and Washington. We assemble cohorts of all students who 

have third grade standardized test scores (the initial statewide testing grade in K-12 public schools) 

and follow them throughout their K-12 schooling careers. Academic mobility is assessed as cohorts 

progress through school. 

Table 1 reports descriptive information for the third grade cohorts in each state, as well as 

the entire U.S. (for comparison). We track academic mobility for two- to four-year cohorts of 

students who were in the third grade between the 2005-06 and 2008-09 school years (hereafter, 

including in Table 1, we identify school years by the spring year, e.g., 2006 for “2005-06”). The 

earliest cohort year is 2006 because this is the first year of consistent testing in grades 3-8 in most 

states, and the latest cohort-year is 2009 because this is the oldest cohort for whom we can track 

lagged graduation outcomes using our data (which go through 2019, one year after the on-time 

graduation year for the 2009 cohort).  

In total our analysis involves more than 2.5 million students (Table 1). The states in the 

sample exhibit substantial heterogeneity in terms of their populations. For example, the percent of 

black and Hispanic students across states ranges from 3.0-19.0 and 4.0-47.7, respectively. There is 

also considerable variation across states in the shares of students receiving free or reduced-price 

lunch (FRL), identified for an Individualized Education Program (IEP), and who are geographically 

mobile.5 Finally, the structure of the education system differs significantly across the states in terms 

                                                 
5 Geographic mobility is defined by students who are enrolled in more than one school during the year in which they 

took the 3rd grade test. States differ in terms of the frequency of collecting school enrollment information, which may 

account for some of the heterogeneity across states in this variable.  
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of the distribution of schools located in urban, suburban, and rural areas, and the numbers districts 

and schools, both in absolute and per-capita terms. While our sample is not designed to be 

representative of the United States as a whole, the six states we examine are diverse along many 

dimensions and provide substantively different evaluation contexts. 

Under the No Child Left Behind Act (NCLB) and the Every Student Succeeds Act (ESSA), 

all students are required to be tested in math and ELA/reading in grades 3-8, and at least once in 

grades 10-12. Thus, while each state administers a unique test, our analysis of academic mobility 

between grades 3 and 8 is fairly uniform across states.6 At the high school level, however, the 

flexibility of federal testing requirements means that the grades in which a test outcome is observed 

varies somewhat across states. To assess academic mobility based on high-school achievement, in 

each state we identify an exam with near-universal coverage administered in a common grade (see 

Table 2).7 With the exception of Michigan, which has a universal ACT/SAT policy, the common-

grade requirement is such that the subject of the selected test is ELA-based. This is because the 

English curriculum in high school is more rigidly structured than in other subjects (e.g., in math and 

science, students are much more likely to take the same classes in different grades). Table 2 shows 

that the focal high school tests are administered in grades 10 or 11, have very high coverage rates, 

and are overwhelmingly taken in the common grade.8 We also assess the likelihood of high school 

graduation and consider both on-time and delayed graduation. We define the latter as graduating 

within one year of on-time. 

                                                 
6 Some students take an algebra-I end-of-course (EOC) test instead of the statewide grade-8 math test in grade-8. For 

these students, we use their grade-7 test performance to predict what the grade-8 test would have been had they taken 

the statewide test. More details about the prediction model are available upon request. 
7 The requirement of a common grade limits concerns about the confounding effect of test-timing on our cross-district 

measures of academic mobility, which has come up most often with respect to studies of Algebra-I end-of-course exam 

performance (Clotfelter, Ladd, and Vigdor, 2015; Domina et al., 2015 ; Parsons et al., 2015). 
8  Note that in Washington a test change during the data panel changed the test and focal grade, as noted in the table. 
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2.2 Measuring Academic Mobility 

2.2.1 Rationale and Basic Framework  

As noted above, our methodological approach follows on the framework developed by 

CHKS and CHJP to study intergenerational economic mobility. The mobility metrics we construct 

are based on percentile rankings in the performance distribution for various outcomes at different 

points in the schooling career. In their similar percentiles-to-percentiles analysis of place-based 

intergenerational economic mobility, CHKS note that “absolute mobility may be of greater 

normative interest than relative mobility” (p. 1562) because the former must reflect an unambiguous 

improvement. This logic applies to our measures as well. For instance, relative mobility could be 

high in a district with underwhelming performance among initial high-performers, even in the 

absence of exceptional performance of initial low-performers. Many researchers and education 

systems use the district achievement gap as a measure of performance, and comparisons between 

relative and absolute mobility highlight potential limitations of this measure. Specifically, a 

rightward shift in achievement across the distribution for one district could potentially leave the 

achievement gap unchanged or slightly larger, while a leftward shift of the achievement distribution 

that is more pronounced at higher achievement percentiles could potentially reduce the achievement 

gap even though initially low-achievers actually fare worse in comparison to peers in other districts.  

Like CHKS and CHJP, we have sufficiently rich data to describe the joint distribution of 

early- and late-career student performance nonparametrically in the form of 100x100 percentile 

matrices for each outcome and state. However, we follow their lead in the use of parsimonious 

summary measures of mobility. A key insight from CHKS permitting parsimonious presentation is 

that the rank-rank relationship between intergenerational economic outcomes is functionally linear. 

This allows them to summarize the relationship in each state with just the slope—the measure of 
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relative mobility—and intercept—the measure of absolute mobility—parameters from a linear 

regression. This is also true in our application—i.e., the rank-rank relationships between early- and 

late-career student outcomes at various points during K-12 education are linear. Documentation of 

the linearity of the rank-rank relationships in our data is provided in Appendix Figure A1.9  

Equation (1) summarizes a student’s late-career rank given the early-career (grade-3) rank 

with just the slope (  ) and intercept ( ) parameters from the following regression: 

 i i iO R      (1) 

In equation (1), iO  is a late-career academic outcome for student i and iR  is student i’s initial 

academic rank (assessed in the third grade).  

We define iO  in four ways: test score rank as measured by combined performance on math 

and English Language Arts (ELA) grade-8 statewide assessments (i.e., average of the grade-8 

ranks), test score rank on the HS test (using the tests indicated in Table 2), on-time high school 

graduation, and high school graduation within one-year of on-time. For the graduation outcomes, 

iO  is not a rank, but simply an indicator for whether graduation occurred.  

In our primary specifications we set the initial rank, iR , as the average rank on third grade 

math and ELA statewide tests. In extensions omitted for brevity we also construct subject-specific 

versions of iR  based on third grade math and ELA ranks that we link to subject-specific math and 

                                                 
9 Results are reported in the appendix for three states; results for the other states are pending. Linearity is strongly 

upheld in the achievement-based rank-rank relationships in all three states. For the relationships involving high school 

graduation outcomes, which are binary, we use binned scatter plots where the first point is the average high school 

graduation rate for students who enter the panel in the 1st percentile, and so on. CHJP use this method to explore several 

dichotomous outcome variables in their study. As in CHJP, the rank-rank relationship is linear throughout most of the 

initial placement distribution (roughly the upper 80 percent) for our binary graduation outcomes. At lower percentile 

values the relationship is not linear, which is attributable to strong floor effects in graduation combined with the binary 

outcome. 
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ELA ranks in grade-8 (no unique insights come from the subject-specific models and we suppress 

the results, they are available upon request).  

Figure 1 illustrates two hypothetical, extreme mobility scenarios within our percentiles-to-

percentiles framework, which applies for the mobility assessments based on the eighth-grade and 

high-school tests. The first graph in the figure shows a case where  = 0 and  =1. This is a 

situation with no academic mobility, as the average outcome rank is the same as the entry rank at 

every percentile in the distribution. At the other extreme, the second graph where  = 50 and  = 0 

indicates perfect academic mobility—here the average outcome rank is at the median regardless of 

the student’s entry percentile in the state achievement distribution. This would mean that students 

who enter in the first percentile achieve outcomes that are, on average, equivalent to those of 

students who enter the panel in the 99th percentile.   

Figure 1 illustrates the interdependence of   and   when the rank-rank relationship is 

estimated on the entire population (which in our context is the population of a state). Because the 

estimated regression line for an entire state must pass through the mean of the data and the model 

regresses percentiles on percentiles, then by construction it must pass through (50, 50). As a result, 

the mobility relationship is fully captured by the slope coefficient,  , which also defines the y-

intercept, , which is given by 50 50   .  

When we disaggregate the data below the state level—e.g., for subpopulations of students 

within a state, or for school districts—the parameters  and   become separately identifiable and 

provide unique information about absolute and relative mobility, respectively. This is because the 

rank-rank lines need not pass through the point (50, 50) for a subpopulation. To illustrate this point, 

consider the following modified versions of equation (1) that permit subgroup-level analyses: 



9 
 
 
 

                                                 is s s is isO R                                                             (2) 

d did id idO R                 (3) 

In equation (2), the subscript s indicates the group membership of student i—e.g., within a state we 

define groups s by race/ethnicity, FRL eligibility, and the urbanicity (urban, suburban or rural) of 

the school attended in the third grade. In equation (3), the subscript d identifies students who attend 

school district d. The dependent and independent variables in equations (2) and (3) continue to be 

defined by the full statewide distributions (i.e., the ranks are not type-specific). s  and d  capture 

absolute mobility in the statewide distribution at the bottom of the panel entry rankings for students 

in group s and district d, respectively. Similarly, s  and d  capture differences in relative mobility 

across groups of students defined by their subgroup membership and districts.  

Total mobility for a subgroup of students in equation (2) or (3) is defined by the values of 

both mobility parameters, as illustrated by the hypothetical scenarios in Figure 2. In each scenario, 

the slopes of the two lines are held constant (i.e., neither solid  nor dashed  change across panels), 

with the solid line exhibiting more relative mobility, shown by the slope of the solid line as less 

steep than the dashed ( solid dashed  ). Hence, two students from the solid group who enter the panel 

with a given performance gap will have a smaller later outcome gap, on average, than two students 

from the dashed group who enter the panel with the same performance gap. This can be seen 

visually in Figure 2 by the fact that for a fixed entry-percentile gap (shown on the X-axis), the 

outcome-percentile gap (shown on the Y-axis) is smaller for students represented by the solid line 

than for those represented by the dashed line. Moreover, in each scenario absolute mobility, as 

indicated by the intercept  , is larger for the solid group ( solid dashed  )—i.e., the lowest 
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performing students from the solid group perform better on the outcome measure than the lowest 

performing students from the dashed group.  

The size of the gap in absolute mobility in Figure 2 results in very different outcomes for the 

two groups. In the first panel, the gap in absolute mobility is large, and as a result, students in the 

solid group have greater upward mobility throughout most of the distribution. This is apparent in 

the figure by their higher outcome ranks on the vertical axis at most entry-rank values. When the 

gap in absolute mobility is moderate in the second panel, the dashed group overtakes the solid group 

more quickly. The third panel shows that if the gap in absolute mobility is small enough, the greater 

relative mobility of the solid group leads to a situation where students from that group underperform 

the dashed group with respect to the outcome measures at most entry percentiles. This latter 

situation is an example of why CHKS argue that absolute mobility is a more useful measure than 

relative mobility conceptually—the higher relative mobility of the solid line simply reflects the 

underperformance of initial high achievers in the hypothetical district. 

Total academic mobility at percentile p, inclusive of absolute and relative mobility, can be 

expressed for group s as follows:  

ps s s pO          (4) 

Equation (4) gives the average outcome rank for students in group s for any given starting percentile 

p. Similarly, pdO  gives the district-level analog. Following CHKS, we focus on the mobility of 

students at the 25th percentile of the initial performance distribution to produce summary measures 

of academic mobility for initially low-achieving students, denoted by 25O . From equation (4), 25O  

for student group s can be estimated as 2ˆ * 5ˆ
s s  . 
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The interpretation of the  ’s and  ’s as described thus far applies to their estimation on 

outcomes that are percentile-ranked. The graduation outcomes are not ranked. Rather, they are 

binary indicators equal to one if student i graduated and zero otherwise. Noting this difference, the 

academic mobility parameters are conceptually similar in their interpretation in the graduation 

models. For example, psO  in equation (4) for on-time graduation indicates the likelihood of 

graduation for a student in the 25th percentile of the third grade performance distribution who 

belongs to group s. This likelihood can be compared to the likelihood of graduation for a student in 

the 25th percentile in group r, r≠s, to compare the mobility across groups as measured by 

graduation. This parallels the approach of CHJP for the binary variables they consider in their 

analysis of intergenerational economic mobility. 

2.2.2 Complicating Issues: Measurement Error and Sample Attrition 

In this section we discuss two complications associated with the measurement of academic 

mobility. First, the initial third grade percentile rankings are measured with error as they are based 

on noisy test scores (Boyd et al., 2013; Lockwood and McCaffrey, 2013). This will attenuate our 

estimates of   and correspondingly inflate our estimates of  . 

We reduce the influence of test measurement error by using the average of the ranks in math 

and ELA in third grade to set the initial percentiles, rather than using ranks based on a single test. 

However, this does not fully address the problem. Thus, in addition, we leverage data on 

measurement error in the testing instruments to further adjust our estimates. Specifically, the state 

tests we use to set the initial ranks include publisher-provided Standard Errors of Measurement 

(SEMs), which give estimates of the measurement-error variance in student scores. We use the 

SEMs to construct reliability ratios for students’ initial percentiles following Wang and Stanley 

(1970), who give formulas for reliability ratios based on multiple assessments (in our case, the third 
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grade math and ELA tests).10 We then estimate standard errors-in-variables regressions to correct 

the   coefficients for attenuation bias.11 

The measurement-error correction work has only been completed for Missouri thus far. 

Results from the other states are pending. For this reason, we show results throughout the main text 

based on analyses of initial percentile ranks that are not corrected for measurement error. Noting 

this limitation, the Missouri results show that while the magnitudes of  and   are affected by 

attenuation bias owing to measurement error, none of our findings with respect to heterogeneity in 

  and   are qualitatively affected by the measurement-error adjustment. We elaborate on these 

results below and show the estimates from Missouri in the appendix. 

A second complication is that we can only observe students who remain enrolled in their 

initial state’s public schools because we only have access to the state administrative data panels. 

This presents a challenge because it means we cannot track longer-term educational outcomes for 

the full cohorts of third grade students in our initial sample—we can only track students who remain 

in public schools in the home state long enough to be assessed. We impose this restriction 

conditional on the outcome assessed—e.g., for the grade-8 test outcome we track academic mobility 

                                                 
10 Define mr  and 

er  as the reliability ratios for the third grade math and ELA standardized tests individually, and 
,m e  

as the correlation of performance on the two tests. The reliability of performance as measured by the average 

performance across the two tests is given by: ,

,

0.25 0.25 0.50

0.50 0.50

m e m e

c

m e

r r
r





 



 . This formula is specific to calculating the 

reliability ratio for a combined assessment based on two tests with equal weight, which is the application here; the 

general formula from which it derives is available from Wang and Stanley (1970). Note that the SEMs of the tests taken 

by different cohorts in the sample in each subject vary slightly from year-to-year—in our calculations, we use the 

average SEM across all cohorts in each subject for the reliability ratios. 
11 Another way to address the measurement error problem is to use more tests to set the initial ranks. This approach 

builds on analogous approaches used by CHKS and Solon (1992) to reduce the influence of measurement error in 

annual earnings in their investigations of economic mobility. This approach is feasible for us in that we can use tests 

from later grades, but this comes with additional complications—most notably, as we use tests from later grades our 

initial rank period gets closer in time to the outcome rank period, limiting our ability to study academic mobility. 

Nonetheless, in results omitted for brevity we explore this approach by bringing in 4 th grade math and ELA assessments 

to set the initial ranks. The results are broadly similar to what we find using the SEM-based approach, acknowledging 

that there is some ambiguity owing to the aforementioned compression of time between ranking periods. 
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for students who remain in the state through grade-8, for the high school test we track academic 

mobility for students who remain through the focal testing grade, and so on.  

Our focus on students who remain in the data long enough to be assessed necessitates two 

caveats. One caveat is that this implies a modest concession in terms of the generalizabilty of our 

findings. We view the concession as “modest” because most students who are in the third grade 

samples remain within the states throughout the rest of their K-12 schooling careers. For instance, 

as shown in Table 3, we observe high school graduation (the most distant outcome from third grade) 

for 80-88 percent of our initial entering cohorts across states.  

A potentially more substantive caveat is that our inability to observe state exiters raises 

concerns about bias from changes to the sample composition over time in each state. The validity 

issue stems from the fact that mobile students—whether across schools, districts, or states, are 

negatively selected on average (e.g. Grigg, 2012; Mehana and Reynolds, 2004). The negative 

selection is apparent in comparisons between state stayers and state movers in the data from each of 

the six states in Table 3—i.e., the average entry percentiles of state exiters are consistently below 

50, as are the average outcome percentiles of students who were not in the focal state in the third 

grade but appear later (shown for the test outcomes only in Table 3).12  

There are two types of bias concerns due to the negative selection of state leavers. The first 

is reference bias. Given that state leavers are negatively selected, on average, if their departure from 

the distribution is unaddressed the reference bias will lead to understated academic mobility among 

state stayers.13 We address this concern by using in-migrators to counterbalance out-migrators when 

                                                 
12Note that with an underlying continuous distribution of scores, the mean of each rank distribution should be exactly 

50. The mean in several states deviates (very) slightly from 50 because of lumpiness in the underlying test-score 

distributions, which produces lumpiness of percentiles that can fall above or below the median. 
13 This is easiest to illustrate if one considers the extreme scenario in which there is no academic mobility in the full 

population (i.e., the rank order does not change), but the bottom 10 percent of students in the entry cohort disappear by 
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we set the rankings for our focal third grade cohorts of state stayers at different points in the 

schooling career. That is, we set the initial ranks based on all third grade students, then for a future 

outcome in grade g (where g > 3), we calculate the percentile ranks for state stayers within the full 

distribution of all observed students in grade g, inclusive of in-migrators. If in-migrators and out-

migrators are similarly selected, the rank mobility of state stayers over time can be reliably 

measured with this substitution. 

Table 3 shows that in several states—Missouri, Oregon, and Washington—the in-migrator 

and out-migrator ranks are similar for the grade-8 and high school tests, although there are small 

differences. In Massachusetts, Michigan and Texas, in-migrators and out-migrators are both 

negatively selected, but the differences between them are more pronounced.14 This suggests that 

backfilling the distribution with in-migrators to replace the lost out-migrators is a reasonable, 

though imperfect, solution to address the reference bias problem. That said, there is no indication 

that differential selection between state entrants and exiters drives our findings substantively. For 

example, our results below are qualitatively similar in states with different selection directionally 

(e.g., Massachusetts and Michigan); moreover, the results are qualitatively similar in states with 

more and less differential selection (see Appendix C). Explanations for the insensitivity of our 

findings across states to differential in-migrator and out-migrator selection conditions include (a) 

that differences in selection are fairly modest in all states, even in the states with the largest 

differences, and (b) the majority of the sample in each state remains in-state over the course of the 

                                                 
the outcome year and no adjustment is made. In this case, the mobility curve (e.g., as in Figure 2) would be truncated 

such that it would cross the horizontal axis at the 10th percentile but would still end at coordinates (100,100). It would 

always be at or below the full population equivalent curve. Less extreme selection will generate a less extreme but 

directionally similar response. 
14 Note that with an underlying continuous distribution of scores, the mean of each rank distribution should be 50. The 

mean in several states deviates (very) slightly from 50 because of lumpiness in the underlying test-score distributions, 

which produces lumpiness of percentiles that can fall above or below the median. 
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full period during grades 3-12. Finally, note that reference bias is not a concern for our analysis of 

graduation outcomes because we assess academic mobility in terms of graduation directly rather 

than a rank-based measure. 

The second concern is of the more typical variety. Namely, because we only directly analyze 

the ranks of state stayers, our findings will be biased by sample composition changes if state exiters 

are different from state stayers in unobserved ways conditional on their initial ranks. This issue is 

not likely to be very important at the state level because it reduces to the generizability caveat 

above—i.e., our results are only valid for individuals who remain in their states. However, for our 

subgroup analysis is it potentially more problematic. For example, if state exiters are negatively 

selected conditional on their initial ranks, and district A has a higher proportion of exiters than 

district B, the differential attrition between districts will cause a compositional bias in the 

comparison. 

For the time-being we leave this second type of potential biasing concern unresolved. In 

future iterations of this work we will implement an imputation procedure that will permit us to 

retain the entire initial third grade cohort for analysis of academic mobility. We will impute missing 

longer-term outcomes for students who exit the state using available data prior to the point of exit. 

The imputation procedure will also be designed to allow us to parameterize additional unobserved 

selection of out-of-state movers and examine the sensitivity of our findings to different 

parameterizations. 

3. Findings 

We conduct the analyses described above for each state separately. The state-by-state results 

show great consistency and accordingly, we consolidate the findings in the main text by reporting 
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simple-average values across states.15 State-by-state breakouts of the summary findings are 

available in Appendix C, and we note in text the handful of instances where there are notable 

differences across states. 

3.1 Broad Patterns of Academic Mobility at the State Level 

Figure 3 reports averages of the state-level estimates of   and 25O  from equation (1) (recall 

that   is redundant in the statewide models). Consistent with evidence that early measures of 

achievement are highly predictive of later outcomes, a student’s position in the test distribution in 

the third grade is highly predictive of 8th grade and high school test rankings. The average estimates 

of   for the eighth grade and high school tests in Figure 3 are 0.75 and 0.73, even before correcting 

for attenuation due to measurement error. Using a projection based on how the Missouri results are 

affected by the measurement error correction (see Appendix Figure A2), we estimate that the 

average corrected ' s  for the six-state sample will be around 0.80-0.82 for these outcomes. Put 

more plainly, where students start in the distribution, when tested in the third grade, is highly 

predictive of where they end up in the distribution in eighth grade and high school. 

The estimates of   for the graduation outcomes are much lower—0.32 for on-time 

graduation and 0.23 for lagged graduation—reflecting a much weaker gradient between initial 

percentile ranks and the likelihood of high school graduation. The weaker gradient is visually 

apparent in the scatterlplots shown in Appendix Figure A1 and is driven by the fact that graduation 

rates are high throughout most of the entry-rank distribution. Put another way, because high school 

graduation is a fairly indiscriminate outcome (most students graduate), students’ early-career 

performance ranks are not strong predictors of success. 

                                                 
15 We report simple averages rather than weighted averages in order to preserve as much of the state-level sample 

heterogeneity as possible. 
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The 25O  values for the test-score outcomes are similar to each other, at 31.7 and 32.9 for the 

eighth-grade and high-school tests, respectively. The high school 25O  values are expected to be 

higher if academic mobility is a continuous process during K-12 schooling. These numbers indicate 

that the average 25th percentile entrant in our data scored at the 31.7th percentile of the combined 

eighth-grade math and ELA tests, and at the 32.9th percentile of the high school test. The 

graduation-based 25O  values, which capture on-time and delayed graduation likelihoods for the 

average 25th percentile student, are 78.4 and 83.8. 

Returning to the measurement-error issue, and folllowing on the discussion above, the 

measurement error correction increases the value of   and reduces the value of   (as can be seen 

for Missouri in Appendix Figure A2). Because the directions of the attenaution bias in   and   are 

opposite, the effect on 25O , which combines information from both parameters, is muted. The effect 

should be essentially offsetting at the 50th percentile of the distribution because this is where the 

magnitude of the bias in   will equal the magnitude of the bias in  in terms of setting the ranks. 

At values below the 50th percentile, such as at 25O , the upward bias in   will exceed the bias 

toward zero in  , leading to overstated 25O  values in the absence of the measurement-error 

correction. Another way to think about the uncorrected 25O  values is that they are biased upward 

because of mean reversion due to test measurement error. When we correct for the test 

measurement error to account for the mean reversion, the estimates of  25O  should decline. 

We again project the likely effects of the measurement error correction in all six of our 

states based on the correction results that are currently available from Missouri. The projections 

suggest that the 25O values in Figure 3 for test ranks in eighth grade and high school will fall by 

about 2 percentage points once we correct for measurement error in the initial ranks in all six states. 
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For graduation outcomes, we project that the 25O values will fall by about half of a percentage 

point.  

Finally, Appendix C shows that the graduation-based mobility metrics exhibit more cross-

state variability than the test-based mobility metrics. The distributions of test score ranks are forced 

into alignment across states by the percentile conversions. But the distribution of graduation 

outcomes are quite different across states, primarily because there are notable differences in 

statewide graduation rates. Given that most students graduate, the statewide graduation rate 

differences are particularly impactful for students in the lower end of the performance distribution. 

Hence, states with higher graduation rates overall have higher graduation-based 25O  values.  

This creates is an important source of ambiguity in interpreting the mobility findings with 

respect to graduation outcomes across states. One interpretation of a high 25O  value is that it 

reflects a state’s success in pushing initially low-achieving students through high school. But an 

alternative interpretation is that high graduation rates for initially low-performing students reflects 

low standards for receiving a high school diploma (Costrell, 1994). Unfortunately, our data are ill-

suited to distinguish between these interpretations. 

3.2 Academic Mobility for Sub-Groups Within States 

In Figures 4, 5 and 6 we report on variants of Equation (2) where we define groups s by 

students’ third grade racial/ethnic designations, FRL designations, and the urbanicity of the third 

grade school (urban, suburban, rural). Again, once we split the sample into subgroups within states, 

s  and s  are separately identified for each group and contribute unique information. 25sO  serves 

as a summary measure of academic mobility. We continue to report simple-average values across 

the sample states in the figures. The charts in row 1 of each figure show the 
s , ,s  and 25sO  
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parameters for the test-score outcomes and the charts in row 2 show the same parameters for the 

graduation outcomes. 

We begin with Figure 4, which shows results for the splits by race/ethnicity. We compare 

Asian, Black, Hispanic, and White students.16 The gaps in 25sO  in the charts in the third column of 

Figure 3 show that initially low-performing Asian students have the highest academic mobility. 

There is a significant gap between Asian students and all other racial/ethnic groups, and this is true 

for both test-based and graduation-based mobility. This result is shown on average across the 

sample states in Figure 4; in Appendix C we show that it holds with great consistency across states 

individually as well.  

The academic mobility differences between the other three racial/ethnic groups are less stark 

but still clearly present—within these groups, White students are the most mobile, followed by 

Hispanic and then Black students. The Black-White and Hispanic-White 25sO  gaps in terms of 

grade-8 achievement, for example, are 4.4 and 1.9 pecentage points, respectively. For on-time 

graduation these same gaps are 6.3 and 3.0 percentage points. The Black-White mobility gaps 

shown in Figure 4 are consistent with evidence on the widening of the Black-White achievement 

gap in North Carolina (Clotfelter, Ladd, & Vigdor, 2009) and nationally (Todd & Wolpin, 2007). In 

contrast, Clotfelter, Ladd, and Vigdor (2009) find that the Hispanic-White achievement gap narrows 

in North Carolina in grades 3-8, but this result is not replicated in our data. Our findings for the 

Hispanic-White gap align more closely with evidence from Reardon and Galindo (2009), who find 

that the Hispanic-white achievement gap is fairly flat from grades 1-5 using a nationally 

                                                 
16 There is also an “other race/ethnicity” category in the data to capture all other students, but it is a small group and 

omitted from our focal comparisons. 
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representative sample, and Todd and Wolpin (2007), who find that it remains flat or widens 

modestly.17 

  A broad takeaway from Figure 4 is that variation between race/ethnic groups in absolute 

mobility (
s ) drives the variation in total mobility  ( 25sO ), and there is substantially less variation 

in relative (within district) mobility ( )s . The top row in Figure 4 shows that for the 8th grade and 

high school test outcomes, there is little variation in relative mobility ( )s  across groups—all hover 

around 0.7 (grade 8) and slightly lower (high school test). Most of the variation is in absolute 

mobility (
s ). This is reflected in the visual correspondence between the heterogeneity in 

s  and 

25sO  in the first and third columns of charts, again noting that 25sO  is a summary measure of the 

information in 
s  and s  for initially low-performing students. The variance in relative mobility 

( )s  across racial/ethnic groups is somewhat more pronounced when we examine graduation 

outcomes, but even then the predominant variation driving differential total mobility by 

race/ethnicity ( 25sO ) is in absolute mobility (
s ). This strong correspondence between 

s  and 25sO  

is visually reinforced in the state-by-state results in Appendix Figure C2. 

Another way to illustrate the importance of absolute versus relative academic mobility in 

explaining total mobility by race/ethnicity is to decompose the total change in 25O  between groups 

into the portions that reflect   and  . For example, consider the average gap in 25O  between the 

highest-mobility group—Asian students—and the lowest-mobility group—Black students—in 

Figure 4. From row 1, column 3 of the figure, and focusing on the grade-8 test, the 25O  gap is about 

                                                 
17 A more nuanced explanation of Reardon and Galindo’s (2009) findings is as follows: point estimates imply a modest 

shrinking of the gap in math and a modest increase in reading. Although we do not perform formal tests, based on their 

reported standard errors it seems likely that their confidence intervals would include our estimates if the analytic 

approaches were otherwise aligned.  
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12.4 percentile points. Of this total gap, just over 10.5 points is accounted for by the gap in   

between Asian and Black students, and only 1.9 points is accounted for by the gap in   (which is 

roughly 0.07 in the chart, multiplied by 25 to map to 25O ).18 This comparison overstates the value 

of 
s  by focusing at a point in the distribution below the 50th percentile; still, even at 50O , 

s  is the 

dominant explanatory factor over the total mobility gap. Broadly speaking, Our findings suggest 

that when enrollment in a district matters for mobility of initial low performers—that is, when these 

students appear to be less anchored to their third grade test achievement—it is more so because all 

boats are raised in the district rather than particular subgroups of students are impacted. 

Next, Figure 5 shows analogous splits by third grade FRL status. Compared to FRL 

students, non-FRL students have much higher absolute mobility ( ) and similar relative mobility (

 ) (their   estimates are slightly higher for the test-based metrics and somewhat lower for the 

graduation metrics). These combine to result in much higher 25O  values for non-FRL students, 

especially in terms of graduation outcomes. For example, the on-time and lagged graduation gaps 

among students who differ by FRL status and start at the 25th percentile in grade 3 are 13.4 and 11.1 

percentage points, respectively, as shown in the bottom-right chart in Figure 5. 

The last subgroup comparison we make is by the urbanicity of the school attended in the 

third grade, shown in Figure 6. The categories are urban, suburban, and rural. Here there is much 

less heterogeneity across groups than in the preceding figures, although it is again true that what 

heterogeneity does exist is concentrated in the absolute-mobility metrics. The most notable variation 

in Figure 6 is in terms of graduation rates. This is observed most easily in the bottom-right chart. It 

shows that graduation rates for initially low-performing students who attend urban schools are 

                                                 
18 Note that the numbers from this calculation are depicted in the charts, but sometimes difficult to infer precisely 

visually. The raw data underlying the charts are available in Appendix C. 
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significantly below those of their suburban and rural counterparts (which have similar graduation 

rates) in the sample states. 

In Appendix Figures A3 and A4 we show measurement-error corrected analogs to Figure 4 

and 6 for Missouri (the measurement-error corrected version of Figure 5 is forthcoming). The 

appendix figures confirm the comparative patterns presented in Figures 4 and 6 are substantively 

unaffected by the measurement-error correction in Missouri, and strongly suggest this result will 

generalize to Figure 5 and the analogous output from other states. 

Appendix Figures C2, C3, and C4 provide the state-by-state results that underlie the 

consolidated results in Figures 4, 5, and 6. For the comparisons along all three dimensions, there is 

strong consistency across individual states in the results. 

3.3  District-Level Variation in Mobility 

Figure 7 documents within-state, cross-district heterogeneity in   and   as estimated by 

equation (4). Specifically, the figure reports the averages of the estimated standard deviations of 
d  

and d  for each outcome in each state. These estimates capture the extent to which rates of 

absolute and relative academic mobility vary across school districts within our sample of states.  

An issue with these calculations is that the raw variance of  ˆ
d  and ˆ

d  will overstate the 

true variance across districts in 
d  and d  because the raw variance includes sampling variance. 

We net out the sampling variance using a randomized inference procedure in which we randomly 

assign students to districts, then estimate “null distributions” of ˆ
d  and ˆ

d  that entirely reflect 

sampling variance. We repeat this procedure 300 times and use the average variance across the 300 

null distributions as an estimate of the sampling variance.  
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To illustrate, define 
2

̂  as the unadjusted variance of ˆ
d  using the real data, and 

2

ˆ ,null  as 

the average value of the null-distribution variance of ˆ
d  with random student assignments to 

districts. The standard deviation of the parateter of interest, 
d , net of sampling variance, can be 

estimated as: 

     2 2

ˆ ˆ ,null            (5) 

A similar procedure is applied to obtain estimates of  . The null distributions from the 

randomized inference procedure also allow for direct tests of statistical significance of the 

variability in 
d  and d . We say that the variance of a given parameter across districts is 

statistically signficant in a given state if the variance estimate using the observed data falls outside 

of the 95-percent confidence interval of the null-distribution values. 

Thus far we have only been able to perform the randomized-inference procedure in 

Missouri. The variances of 
d  and d  across districts for all outcomes are statistically signficant at 

the 5 percent level or better, although the p-values are lower for d . To produce Figure 7, and to 

ensure that we do not overstate the standard deviations of 
d  and d  in the sample states, we use 

the magnitude of the error-variance correction in Missouri, in percentage terms, to adjust the raw 

variance values for all states. This is an approximation that serves as a placeholder until the state-

by-state randomized-inference results are available to make a more precise correction. 

A second, smaller issue with the variance comparisons is that 
d  and d  are not in the 

same units, making an assessment of the magnitudes of the variances difficult in raw terms. For 

comparability purposes we report estimates based on the variance of 50* d  to reflect the effect of 

variability in d  assessed at the center of the initial rank distribution. This allows for an appropriate 
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comparison of variance magnitudes between 
d  and d  given that the variance of 

d  is 

indepenent of initial rank. 

At a high level, the results in Figure 7 show that on average across the sample states, the 

cross-district variance of  
d  consistently exceeds the magnitude-aligned variance of d . 

Specifically, the average standard deviation of 
d  is about 50-100 percent larger across outcomes. 

Appendix Figure C4 shows that this relationship holds fairly steadily on a state-by-state basis. The 

randomized inference procedure also reveals that the estimation-error share of the raw variance in 

d  and d  is much larger when these metrics apply to graduation outcomes as opposed to test-

based outcomes (results suppressed for brevity). 

In terms of interpretation, the results indicate that attending a district that is one standard 

deviation higher in the distrubibution of absolute academic mobility (
d ) corresponds to an 

increase in student rank on the grade-8 test of 5.8 percentile points, on average. For the high-school 

test the same change corresponds to a 5.4 percentile point increase, and for on-time and delayed 

graduation rates the gains are 7.8 and 5.3 percentage points, respectively. The variances in relative 

mobility are more difficult to interpret in isolation. More broadly, a challenge in mapping the 

variances in 
d  and d  directly to student outcomes is that their combined movements determine 

total academic mobility, inclusive of co-movement. Future iterations of this work will replicate our 

procedure using the total mobility measure—i.e., 25O —to gain clearer insight into the meaning of 

cross-district variability in total academic mobility. 

3.4 District-Level Correlates of Academic Mobility 

In order to explore linkages between academic mobility and district characteristics, we 

construct estimates of 25dO  using the estimates of 
d  and d  for each district, then regress 25

ˆ
dO  on 



25 
 
 
 

a host of district characteristics. The district characterisicts we consider include the percentage of 

students who are (a) Black, (b) Hispanic, (c) free/reduced-price lunch eligible (FRL), (d) 

participants in an individualized education plan (IEP), and (e) geographically mobile. Recall that we 

define a student as geographically mobile if she spends less than the full school year in the school 

where she is tested in that year (i.e., if she is a mid-year school mover). We also construct a district-

level measure of school segregation using a Theil index, following CHKS.19 All of these metrics are 

constructed for school districts using data from cohort students in the third-grade year. 

A final district measure we use to explain academic mobility is district-level value added to 

student test scores in math and ELA from grades 4-8. Value-added captures district contributions to 

student test score growth conditional on student characteristics. We use the larger state data samples 

of all students in grades 4-8 to estimate district value added with a two-step model based on 

Parsons, Koedel, and Tan (2019): 

 0ijdkt ijdtY       i(t-1) 1 it 2 kt 3 dt 4γ γ γ γY X S L   (6) 

 dijdt ijdt      (7) 

In equation (5), ijlktY  is the test score of student i in subject j taken at district d in school k at time t, 

which is standardized by subject, grade, and year within each state, i(t-1)Y  is a vector of test scores 

in math and ELA taken by student i  the previous year, itX  is a vector of characteristics of student i 

in time t that includes information on the student’s free/reduced-price lunch status, gender, race, 

English as a second language (ELL) status, geographic mobility, and whether or not the student has 

                                                 
19 The Theil index measures the degree of racial/ethnic segregation in a district and ranges from 0 (where all schools 

within a district have the same racial/ethnic composition as the district as a whole) to 1 (where racial/ethnic groups are 

entirely segregated between schools within a district). Districts with only one school are dropped from our analysis of 

district segregation as the Theil index is undefined. 
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an individualized education plan (IEP), ktS  and dtL contain the variables included in i(t-1)Y and itX  

aggregated at the school and district levels, respectively, and ijlt  is the error term. 

In equation (6), the error term from equation (5) is regressed on a vector of district indicators 

to recover district value-added estimates, d , by subject j. We then combine the subject-specific 

estimates to summarize district value-added to both subjects using the weighting approach of 

Lefgren and Sims (2012). The Lefgren and Sims (2012) approach also inherently shrinks the value-

added estimates toward the mean in a regression-based framework, as in Chetty, Friedman, and 

Rockoff (2014). A desirable feature of the two-step modeling structure described by equations (5) 

and (6) is that variation in achievement attributable to student and district characteristics is 

partialled out in the first equation. The resulting value-added estimates from the second equation are 

orthogonal to these characteristics by construction. This is a useful when we correlate the value-

added metrics to our measures of academic mobility at the district level, as it rules out some 

explanations for the relationships we find.20 

Data from the entire panel period for students in grades 4-8 in each state are used to estimate 

district value-added. However, all students in the analysis cohorts are omitted from the models in 

order to remove any mechanical correlation between our academic-mobility and value-added 

metrics. That is, the value-added models are jackknifed around the focal cohorts but otherwise 

cover the timeframe of their enrollment. 

Figure 8 shows the predictors of district-level academic mobility, again summarized by 

25 ,dO  averaged over the states in our sample for each focal outcome. Specifically, we report average 

                                                 
20 Parsons et al. (2019) show that estimates from a two-step model of the form shown in equations (5) and (6) are less 

biased than more common “one-step” models under student-teacher sorting conditions that have been shown to be the 

most prevalent in practice. 
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coefficients across the six states from district-level univariate and multivariate regressions where 

the dependent variable is 25dO  and the independent variables are the district characteristics 

described above.21 The independent variables are standardized in each state to have a mean of zero 

and variance of one to facilitate comparability. The coefficient averages thus reflect the predicted 

change in academic mobility associated with a one-standard-deviation move in the district 

distribution of the independent variable.22 The detailed state-by-state regression output summarized 

by Figure 8 is provided in figure and table form, including information about statistical significance, 

in Appendix C. 

The preceding analysis offers some predictions about the directions of the coefficients, 

particularly in the univariate regressions, for which the results should map closely to the results in 

Figures 4 and 5 for racial/ethnic- and FRL-share differences across districts. Indeed, the first chart 

in Figure 8 shows that higher underrepresented minority (URM, or Hispanic and Black students) 

shares and higher FRL shares correspond to lower academic mobility. More broadly, all indicators 

of student disadvantage in the univariate regressions—student shares by URM, FRL, IEP, and 

mobility—are negatively related to academic mobility on average across the states, as is the school 

segregation index. The other clear result from the univariate regressions is that district value-added 

is positively associated with academic mobility. Notably, the value-added associations are similar in 

magnitude regardless of whether mobility is measured by test scores or graduation. 

                                                 
21 The multivariate regressions also include indicator variables for urbanicity for completeness (for which the 

coefficients are suppressed), but this detail is inconsequential to the results given the limited variability in academic 

mobility by district urbanicity documented in Figure 6. 
22 A one-standard-deviation change with respect to the value-added measure is based on the raw data. Given that the 

value-added measures are shrunken using the approach of Lefgren and Sims (2012), a one-standard-deviation change in 

the raw data corresponds to more than a one-standard-deviation change in the true (unobserved) distribution of value-

added (Chetty, Friedman, and Rockoff, 2014). 
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The multivariate regressions show that district value-added to student achievement and the 

share of students who are FRL are the most important factors for predicting academic mobility. 

Both of these factors are strongly related to academic mobility and the relationships are statistically 

significant individually in most states and for most outcomes in both the univariate and multivariate 

regressions (Appendix C). The FRL share is clearly the primary factor among the indicators of 

student disadvantage—in the multivariate regressions, the associations with the other disadvantage 

metrics attenuate substantially and even flip signs in some cases, whereas the negative associations 

between the FRL share and academic mobility become stronger. Unsurprisingly, the association 

between value-added and academic mobility is essentially unchanged in the multivariate regression. 

This follows from the construction of the value-added models, which partial out variation in 

outcomes due to student characteristics in the first-step equation.  

Finally, Figure 9 shows the average correlations between district value-added ( d ) and 
d  

and d  to gain insight into what aspect of academic mobility drives the association with value-

added. The correlations in the figures are partially corrected for estimation-error variance in the 

metrics via shrinkage in the value-added estimates. However, a correction has not yet been made to 

account for estimation error in 
d  and d , which implies that the correlations as presented are 

attenuated somewhat relative to their true values.23 Noting this caveat, the figure shows that the 

correlation between d  and 
d  is consistently much stronger than the correlation between d  and 

d  in our sample states. While the correlations between d  and 
d are uniformly positive, they are 

larger when 
d  is estimated using a test-score outcome, which is intuitive given that our value 

                                                 
23 In future iterations of this work we will apply empirical Bayes shrinkage to the mobility metrics using the formula 

described in Koedel, Mihaly, and Rockoff (2015) to adjust this correlation. 
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added measures are test-based. For the graduation-based mobility metrics, the correlations between 

d  and 
d  are positive, but they are negative for d .  

The results in Figure 9 show that higher academic mobility in high value-added districts 

reflects higher absolute academic mobility. Put another way, school districts that produce strong 

mobility outcomes for initially low-performing students via the link between 25dO  and district 

value-added, as shown in Figure 8, do not seem to achieve this result by re-shuffling their students 

within their own performance distributions, but rather by improving outcomes for all of their 

students, including initially low performers. This result is consistent with high-value-added districts 

raising performance for all students. It does not support the hypothesis that districts promoting 

mobility among low performers do so by being particularly effective with low-performing relative 

to high-performing students (a scenario that would be captured by variability in d ).24 

4. Discussion and Conclusion 

There is a robust literature showing that early academic performance measures are highly 

predictive of upstream educational success (e.g. Silver, Saunders, and Zarate, 2008; Easton, 

Johnson, and Sartian, 2017). Our work adds to this literature by examining long academic panels 

from six states to show that test scores as early as third grade are highly predictive of 8th and 10th 

grade test scores and of high school graduation. In particular, in regressions of students’ percentile 

ranks on 8th grade and high school tests, we estimate that the coefficient on the third grade 

percentile rank is roughly 0.80 after correcting for test measurement error. Third grade performance 

is less predictive, but still highly predictive, of high school graduation, with analogous coefficients 

of between 0.25 and 0.35 when used to predict on-time and delayed graduation, also after correcting 

                                                 
24 Also see Parsons (2016). 
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for measurement error. The weaker predictive power of the third grade rank over high school 

graduation is driven largely by the fact that most students graduate, which means that variability in 

much of the third grade performance distribution maps only weakly to variation in outcomes. 

Interpreting this is challenging: it could be interpreted as showing that school systems are doing a 

good job of helping most students graduate, or as showing that states have low standards for 

graduation. Our data are ill-suited to disentangle these competing mechanisms. 

Our analysis of differences in academic mobility by student race and ethnicity, FRL status, 

and school urbanicity replicate largely familiar patterns in the literature—White students, and 

especially Asian students, have relatively high academic mobility whereas Hispanic students, and 

especially Black students, have lower academic mobility. A novel and troubling finding, given the 

policy emphasis on achievement of high-poverty students, is that FRL students have much lower 

academic mobility than non-FRL students. Differences in academic mobility by urbanicity are 

smaller than along the other two dimensions, although a notable result is that low-performing 

students who attend urban schools in third grade are much less likely to graduate from high school 

than their suburban or rural counterparts. 

We also show that school districts exhibit statistically and economically significant variation 

in academic mobility. The predominant driver of cross-district variation in total academic mobility 

is absolute mobility, not relative (within district) mobility. That is, districts differ much more by 

whether they are effective in raising achievement throughout the entire distributions of their 

students than they do in their ability to improve lower-performing students’ relative ranks 

internally. Indeed, we do not find evidence of large differences across districts in relative mobility, 

which suggests that districts do not, in fact, differentially specialize in educating students at 

different achievement levels within their distributions (e.g., high versus low achievers).  
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When we consider total mobility (absolute and relative combined), we find that districts 

where initially low-performing students rise the most in the statewide distribution are characterized 

predominantly by having high value-added to student achievement in grades 4-8, and low 

proportions of FRL-eligible students. Because of the way we construct the value-added models for 

our analysis, these two district characteristics are effectively orthogonal. If we consider high value-

add as a proxy for quality, as it measures districts’ unique contributions to student achievement 

gains conditional on the student population served, then together our results suggest that “better” 

districts are, perhaps unsurprisingly, better at helping initially low-performing students improve. 

However, initially low-performing students also improve faster in districts with lower proportions 

of low-income students (proxied by FRL eligibility), pointing to larger economic factors outside of 

the control of school systems that influence academic mobility. 

The analytic framework we draw on from the economic mobility literature is useful for 

documenting academic mobility across states, across subpopulations of students within states, and 

across school districts. We view this work as a first step in a lager research agenda focused on 

academic mobility, and specifically how and why students experience different levels of mobility 

within and across education systems. But, we caution that our descrptive findings are not intended 

to show causal relationships and should not be interpreted as such.  

There are several fruitful directions for future work building on our study. Descriptively 

there is still much to do. For example, the racial/ethnic and FRL gaps in academic mobility can be 

further decomposed into their within- and across-district components to improve our undersanding 

of how these gaps evolve and identify pressure points for future interventions to address them. 

Another area ripe for additional research involves pushing on the causality of district-level 

academic mobility. A natural analog to CHJP’s work on geographic economic mobility, and recent 
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related work on the geography of health (e.g., Deryugina and Molitor, 2019), would leverage 

district movers to assess the extent to which students’ academic mobility trajectories change when 

they move. Finally, it is reasonable to hypothesize that intragenerational academic mobility is a 

factor that drives variation in intergenerational economic mobility as documented by CHKS. School 

systems in which initial low-achievers improve fastest in the academic performance distribution 

plausibly contribute positively to generation-by-generation improvements in economic well-being. 

In future work we will incorporate more states into our analysis and aggregate our district-level 

academic mobility metrics to the commuting zone level. These aggregate data, combined with 

commuting zone data on economic mobility published by CHKS, will facilitate exploration of the 

connection between place-based intergenerational economic mobility and intragenerational 

academic mobility. 
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Figure 1. Hypothetical illustrations of the linear rank-rank relationship. No mobility (left) versus 

perfect mobility (right). 

         
 

 

 

 

 

 

 

 

Figure 2. Comparison of two hypothetical student groups, one with higher relative mobility (solid 

lines) and one with lower relative mobility (dashed lines), with differing gaps in absolute mobility. 
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Figure 3. Simple averages of state-level estimates of   and 25O  for each outcome, baseline estimation conditions.  

  
  

Notes: 25O  for the graduation outcomes is the graduation rate at the 25th percentile of the entering-rank distribution.   is redundant when all statewide data 

are used, as described in the text. Oregon does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS Test results. In 

Michigan, data are unavailable for the 2009 cohort to assess the late-graduation outcome, so just three cohorts are used for that outcome. The estimates of    

and 25O  in the baseline conditions are without correcting for measurement error in the initial percentile ranks. We have yet to run the measurement-error 

correction for all states, but results for Missouri with the error correction are reported in Appendix Figure A2. The results in the appendix are consistent with the 

predicted effects of measurement error as described in the text. Full results broken out by each state individually are reported in Appendix C. 
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Figure 4. Simple averages of statewide academic mobility measures, by race/ethnicity, baseline conditions. 

   
 

   

Notes: 25O  for the graduation outcomes is the graduation rate at the 25th percentile of the entering-rank distribution. Oregon does not offer a high school test 

taken in a (near) universal grade, so Oregon is omitted from the HS Test results. In Michigan, data are unavailable for the 2009 cohort to assess the late-

graduation outcome, so just three cohorts are used for that outcome. These estimates are from the baseline conditions without correcting for measurement error in 

the initial percentile ranks. We have yet to run the measurement-error correction for all states, but results for Missouri with the error correction are reported in 

Appendix Figure A3. The results in the appendix are consistent with the predicted effects of measurement error as described in the text. Full results broken out by 

each state individually are reported in Appendix C. 
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Figure 5. Simple averages of statewide academic mobility measures, by FRL status, baseline conditions.  

   
 

   

Notes: 25O  for the graduation outcomes is the graduation rate at the 25th percentile of the entering-rank distribution. Oregon does not offer a high school test 

taken in a (near) universal grade, so Oregon is omitted from the HS Test results. In Michigan, data are unavailable for the 2009 cohort to assess the late-

graduation outcome, so just three cohorts are used for that outcome. These estimates are from the baseline conditions without correcting for measurement error in 

the initial percentile ranks. Measurement-error corrected results are pending. Full results broken out by each state individually are reported in Appendix C. 
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Figure 6. Simple averages of statewide academic mobility measures, by the urbanicity designation of the school, baseline conditions.  

   
 

   

Notes: 25O  for the graduation outcomes is the graduation rate at the 25th percentile of the entering-rank distribution. Oregon does not offer a high school test 

taken in a (near) universal grade, so Oregon is omitted from the HS Test results. In Michigan, data are unavailable for the 2009 cohort to assess the late-

graduation outcome, so just three cohorts are used for that outcome. These estimates are from the baseline conditions without correcting for measurement error in 

the initial percentile ranks. We have yet to run the measurement-error correction for all states, but results for Missouri with the error correction are reported in 

Appendix Figure A4. The results in the appendix are consistent with the predicted effects of measurement error as described in the text. Full results broken out by 

each state individually are reported in Appendix C. 
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Figure 7. Simple averages of the within-state, cross-district standard deviations of 
d  and d .  

 

Notes: The standard deviations of d  are multiplied by 50 to align the magnitudes of variances of 
d  and d  for comparative purposes in this figure. Oregon 

does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS Test results. In Michigan, data are unavailable for the 2009 

cohort to assess the late-graduation outcome, so just three cohorts are used for that outcome. The standard deviations are corrected for estimation-error variance 

using the randomized-inference procedure described in the text. Current estimates are projections for the all-state sample based on the magnitude of the 

estimation-error correction in Missouri, which is the only state we have run the randomized inference procedure thus far. State-by-state results are omitted from 

Appendix C pending the application of the estimation-error correction procedure in each state. 
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Figure 8. Average coefficients on district-level predictors of 
25dO . Univariate and multivariate regression results.  

  

Notes: The multivariate regressions also include urbanicity indicators but whether these are included does not influence the results. All predictors are 

standardized to have a variance of one so the average coefficients can be interpreted as showing associations with one-standard-deviation moves in each 

predictor, on average across states. For the value-added measures, the standard deviations are in raw values; noting that these are shrunken estimates, a one-

standard-deviation move is equal to more than one standard deviation in the true distribution (Chetty, Friedman, and Rockoff, 2014). State-by-state regression 

output underlying these graphs, including information about the statistical significance of the relationships in each state, is reported in Appendix C. 
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Figure 9. Simple averages of the correlations between district value-added, and 
d  and d , within states. 

 
Notes: Oregon does not offer a high school test taken in a (near) universal grade, so Oregon is omitted from the HS Test results. In Michigan, data are 

unavailable for the 2009 cohort to assess the late-graduation outcome, so just three cohorts are used for that outcome. These correlations are not corrected for 

measurement error in the academic mobility metrics; the value-added metrics are corrected for measurement error via implicit shrinkage. Full results broken out 

by each state individually are reported in Appendix C. 
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Table 1. Definition of the analytic sample and descriptive statistics at panel entry for each state. 
 Cohort 

Years 

N  

(entry cohorts) 

Pct.  

Black 

Pct.  

Hispanic 

Pct.  

FRL 

Pct.  

IEP 

Pct.  

Mobile 

Pct. 

Urban 

Pct. 

Suburban 

# of 

Districts 

# of 

Schools 

Massachusetts 2007-2008 139,337 7.83 13.94 31.65 17.30 2.32* 20.11 68.19 304 1,116 

Michigan 2006-2009 453,733 18.99 5.71 40.97 10.92 11.11 21.29 44.99 755 2,040 

Missouri 2006-2009 264,612 18.17 4.00 46.34 15.16 6.62 18.79 30.87 548 1,200 

Oregon 2006-2008 123,833 3.03 16.83 47.59 15.37 4.03 30.69 25.60 208 1,086 

Texas 2006-2009 1,309,114 13.54 47.68 57.84 5.86 6.68 42.27 27.90 1,173 4,338 

Washington 2006-2008 218,051 5.70 15.80 42.26 11.44 1.04* 26.12 45.30 296 1,254 

            

Entire U.S. 2008 -- 17.04 21.13 42.95 12.35 -- 29.03 35.10 -- -- 
Table Notes: “Cohort Years” refers to the years of panel entry for the cohorts included in the analytic sample, i.e. the years in which the students were in grade-3. 

The spring year is used to indicate the academic year (e.g., 2009 = 2008-09 school year). Students who took both the Math and Reading grade-3 state tests are 

included in the core sample described here. For Washington and Massachusetts, in earlier years of data enrollment surveys were not conducted frequently, which 

likely contributes to the low reported mobility rates in those two states. In more recent data, the mobility rates in Massachusetts and Washington are around 5 and 

8-9 percent, respectively. Note that the numbers of schools and districts reported in the final column indicate the numbers of unique schools and districts included 

in the analysis in each state. Data for the “Entire U.S.” are reported in the bottom row of the table for context and taken from the 2007-08 school year from the 

common core of data and are for students in public K-12 elementary and secondary grades. Note that we do not report a mobility percentage because a 

comparable variable is not available in the common core of data. 
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Table 2. High school exams by state. 

 

HS Exam 

Grade 

Typically 

Taken 

Pct. Of Cohort 

Students Taking 

the Exam On-

Grade 

Pct. Of Cohort 

Students Taking 

the Exam Within 1 

Year of On-Grade 

Massachusetts MCAS ELA 10 99.5 0.2 

Michigan ACT/SAT 11 99.3 0.7 

Missouri English II EOC 10 93.1 2.6 

Oregon -- -- -- -- 

Texas Reading/English II 

EOC 

10 94.13 5.66 

Washington HSPE ELA,  

SBAC ELA 

10, 11 98.3 1.4 

Notes: In Washington a test change led to the change in the grade in which the third grade cohorts took their high 

school exit exams (from grade 10 to 11), as shown in the Table. Michigan transitioned from the ACT to the SAT in 

the 2016-17 school year. The first two analysis cohorts took the ACT in 11th grade, the second two cohorts took the 

SAT in 11th grade. In Oregon there is no single high school test given to more than 90 percent of students in a fixed 

grade to support our analysis of mobility using HS academic achievement. 
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Table 3. State level attrition and in-migration. 
  Original Cohort Members  

  

Panel Entry 

Observed with Outcome Out-Migrators: 

Assessed in Grade-3 But Exited 

Prior to Outcome Year  

In-Migrators: 

Assessed with Outcome but 

Not Present in Grade-3 

  

N N 

Avg.  

Outcome Pctl. 

or Grad Rate 

N 

Avg.  

Entry  

Pctl. 

N 

Avg.  

Outcome 

Pctl. 

 

 

Grade 8 – 

Combined Math and 

ELA 

Massachusetts 139,337 124,606 50.45 14,731 46.65 19,525 38.79 

Michigan 453,733 394,721 50.69 59,012 40.84 48,912 47.93 

Missouri 263,910 227,459 50.69 34,907 47.68 39,834 46.54 

Oregon 123,833 105,674 49.74 18,159 45.87 24,530 44.56 

Texas 1,280,996 1,094,987 48.73 186,009 49.29 169,263 44.94 

Washington 218,051 185,609 50.51 32,442 45.23 43,600 42.73 

         

High School Exam Massachusetts 139,337 114,374 50.53 24,963 46.28 28,794 36.54 

Michigan 453,733 346,217 50.52 107,516 40.83 61,658 47.98 

Missouri 262,366 205,634 51.23 56,732 42.73 51,302 48.24 

Oregon -- -- -- -- -- -- -- 

Texas 1,280,996 1,095,603 50.57 185,393 41.11 284,238 42.35 

Washington 218,051 175,625 53.75 42,426 43.25 61,031 46.681 

         

Graduation (On-

Time) 

Massachusetts 139,337 114,413 93.92 24,924 -- -- -- 

Michigan 453,733 385,359 85.49 68,374 -- -- -- 

Missouri 262,366 210,423 91.08 51,943 -- -- -- 

Oregon 123,833 101,692 83.80 22,141 -- -- -- 

Texas 1,280,996 1,129,684 84.27 151,312 -- -- -- 

Washington 218,051 176,505 82.48 41,546 -- -- -- 

         

Graduation (Within 

One Year of On 

Time) 

Massachusetts 139,337 114,413 94.18 24,924 -- -- -- 

Michigan 341,465 284,947 89.25 56,518 -- -- -- 

Missouri 262,366 210,423 93.59 51,943 -- -- -- 

Oregon 123,833 101,692 85.77 22,141 -- -- -- 

Texas 1,280,996 1,129,684 87.73 151,312 -- -- -- 

Washington 218,051 176,505 86.44 41,546 -- -- -- 

Table Notes: Sample sizes and entry percentiles for state stayers and out-migrators are based on the average of the grade 3 math and reading percentiles (i.e., 

percentiles at entry). For the test outcomes, with an underlying continuous distribution of scores the mean of each rank distribution should be 50. The mean in 

several states deviates (very) slightly from 50 because of lumpiness in the underlying test-score distributions, which produces lumpiness of percentiles that can 

fall above or below the median. For graduation outcomes, we report the percent of students who graduate among stayers because percentiles are not informative. 

We focus on stayers because it is difficult to track graduation rates for state leavers across state lines, and we cannot match new entrants to a specific grade-3 

cohort with certainty (because the grade-3 year is unobserved). In Michigan, data for lagged graduation outcomes are not yet available for the 2009 grade-3 

cohort and the numbers reported in the bottom panel omit that cohort (they are for the 2006-2008 grade-3 cohorts only). 
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Appendix Figure A1. Binned scatter plots of percentiles on percentiles for each outcome to assess the linearity of the rank-rank 

relationships. Michigan, Missouri and Texas plots are available, others are pending. 

Michigan: Grade-8 Math & ELA 

 

Michigan: HS Test 

 
Michigan: Graduation 

 
 

Michigan: Graduation +1 
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Missouri: Grade-8 Math & ELA 

 

Missouri: HS Test 

 
 

Missouri: Graduation 

 
 

Missouri: Graduation +1 
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Texas: Grade-8 Math & ELA 

 

Texas: HS Test 

 
 

Texas: Graduation 

 
 

 

Texas, Graduation +1 

 

Note: Vertical and horizontal axes are scaled from 0-100 in percentiles. 
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Appendix Figure A2. Estimates of   and 25O with and without correcting students’ initial percentile ranks for measurement error. 

Analog to Figure 3. Results shown for Missouri only (results from other states are pending).  

  

Notes: To correct for measurement error in the initial percentile rank based on grade-3 tests, we estimate an errors-in-variables regression where we specify the 

reliability ratio of the initial percentile rank using test-publisher provided Standard Errors of Measurement (SEM) for the grade-3 tests. As discussed in the text, 

the nature of the measurement error in the baseline (uncorrected) condition is such that   should be attenuated and 25O  should be overstated, which is 

consistent with these results. 
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Appendix Figure A3. Comparison of baseline and measurement-error-corrected values of the mobility parameters (
25, ,O  ) by 

race/ethnicity. Analog to Figure 4. Results shown for Missouri only (results from other states are pending). 
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Appendix Figure A4. Comparison of baseline and measurement-error-corrected values of the mobility parameters (
25, ,O  ) by urbanicity. 

Analog to Figure 6. Results shown for Missouri only (results from other states are pending). 
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Figure C1. Estimates of   and 25O  by state and outcome measure corresponding to Figure 3, baseline conditions.  

  

Notes: See notes to Figure 3. 
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Figure C2. Statewide academic mobility measures by race/ethnicity corresponding to Figure 4, baseline conditions. 

    

    

    
Notes: See notes to Figure 4. 
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Figure C3. Statewide academic mobility measures by FRL status corresponding to Figure 5, baseline conditions. 

    

    

    
Notes: See notes to Figure 5. 
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Figure C4. Statewide academic mobility measures by school urbanicity corresponding to Figure 6, baseline conditions. 

    

    

    
Notes: See notes to Figure 6. 
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Figure C5. Predictors of district-level 
25dO  corresponding to Figure 8.  

  

  

  

  
Notes: See notes to Figure 8. 
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Figure C6. Correlations of district value-added with 
d  and d  in each state corresponding to Figure 9. 

  

Notes: See notes to Figure 9. 
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Appendix Table C1. State-by-state numeric results corresponding to Figure 3. 
 Grade-8 Test HS Test Grad Grad +1 

 β O25 β O25 β O25 β O25 

All (Avg) 0.75 31.67 0.73 32.93 0.32 78.41 0.23 83.85 

MA 0.76 32.36 0.73 33.05 0.18 89.71 0.17 90.17 

MI 0.74 30.92 0.75 29.37 0.32 77.28 0.25 82.62 

MO 0.81 29.74 0.72 32.26 0.24 84.66 0.16 89.41 

OR 0.72 31.72   0.31 76.14 0.27 79.1 

TX  0.75 32.43 0.74 33.78 0.48 69.64 0.24 82.25 

WA 0.73 32.87 0.7 36.21 0.37 73 0.28 79.54 

 

 

 

 



65 
 

Appendix Table C2. State-by-state numeric results corresponding to Figure 4. 
 Grade-8 Test HS Test Grad Grad +1 

Student Group: Asian           

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 22.54 0.74 41.05 25.44 0.71 43.20 85.30 0.16 89.18 89.65 0.11 92.30 

MA 24.31 0.74 42.78 26.67 0.71 44.44 93.24 0.08 95.14 93.85 0.07 95.57 

MI 22.88 0.74 41.29 23.2 0.76 42.18 88.49 0.12 91.51 92.77 0.08 94.68 

MO 18.4 0.8 38.40 21.83 0.72 39.83 89.53 0.11 92.28 92.78 0.08 94.78 

OR 18.52 0.75 37.22    82.11 0.19 86.87 84.87 0.16 88.87 

TX 29.65 0.7 47.10 31.27 0.70 48.77 82.18 0.17 86.5 91.1 0.06 92.52 

WA 21.5 0.72 39.51 24.22 0.66 40.78 76.23 0.26 82.78 82.5 0.19 87.38 

 

Student Group: Black           

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 11.51 0.68 28.39 13.96 0.64 29.93 64.80 0.37 73.99 74.21 0.26 80.67 

MA 13.73 0.67 30.43 15.08 0.63 30.82 81.23 0.2 86.32 82.5 0.18 87.16 

MI 11.7 0.62 27.14 9.43 0.56 23.37 63.73 0.36 72.84 71.78 0.3 79.22 

MO 8.04 0.72 26.04 13.78 0.63 29.53 69.99 0.33 78.24 78.88 0.22 84.38 

OR 10.01 0.65 26.36    60.76 0.34 69.24 68.12 0.27 74.76 

TX 13.45 0.7 30.85 15.08 0.69 32.24 54.83 0.55 68.61 76.31 0.26 82.92 

WA 12.11 0.7 29.54 16.42 0.69 33.69 58.23 0.41 68.71 67.64 0.32 75.6 

 

Student Group: Hispanic           

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 13.74 0.69 30.91 15.14 0.66 31.67 68.59 0.34 76.96 76.52 0.24 82.56 

MA 12.93 0.67 29.61 13.9 0.63 29.64 76.37 0.28 83.33 77.4 0.27 84.04 

MI 13.44 0.68 30.53 11.99 0.67 28.68 68.21 0.29 75.51 74.49 0.24 80.37 

MO 13.1 0.74 31.6 18.03 0.64 34.03 77 0.25 83.25 84.19 0.16 88.19 

OR 14.76 0.64 30.65    70.81 0.28 77.73 74.44 0.25 80.56 

TX 14.07 0.7 31.53 15.48 0.68 32.48 55.48 0.54 68.98 75.64 0.27 82.5 

WA 14.14 0.7 31.55 16.31 0.69 33.5 63.66 0.37 72.97 72.98 0.27 79.68 

 

Student Group: White           

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 14.26 0.74 32.81 16.67 0.71 34.47 73.47 0.27 80.26 79.69 0.20 84.78 

MA 14.05 0.76 32.93 15.81 0.72 33.75 89.74 0.11 92.65 90.13 0.11 92.93 

MI 14.09 0.73 32.3 13.22 0.73 31.5 73.05 0.27 79.83 79.32 0.22 84.71 

MO 10.82 0.8 30.82 14.66 0.72 32.66 82.91 0.19 87.66 88.72 0.12 91.72 

OR 14.47 0.71 32.28    68.3 0.31 76.04 72.04 0.27 78.85 

TX 16.55 0.74 35.12 19.18 0.72 37.27 61.68 0.39 71.45 74.45 0.24 80.41 

WA 15.55 0.71 33.38 20.47 0.67 37.18 65.13 0.35 73.94 73.48 0.26 80.06 
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Appendix Table C3. State-by-state numeric results corresponding to Figure 5. 
 Grade-8 Test HS Test Grad Grad +1 

Student Group: FRL           

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 12.68 0.68 29.61 13.51 0.65 29.86 64.76 0.33 73.00 73.17 0.24 79.13 

MA 12.74 0.66 29.27 13.87 0.62 29.48 77.47 0.23 83.16 78.43 0.22 83.84 

MI 12.35 0.66 28.73 10.55 0.64 26.44 62.27 0.31 70.04 69.5 0.26 76.08 

MO 9.18 0.749 27.9 11.55 0.675 28.43 73.14 0.272 79.94 81.18 0.177 85.59 

OR 14.29 0.63 30.03    64.28 0.27 71.1 68.48 0.24 74.37 

TX 13.86 0.68 30.92 15.17 0.66 31.66 53.03 0.53 66.39 73.73 0.27 80.46 

WA 13.68 0.69 30.81 16.42 0.67 33.27 58.35 0.36 67.39 67.71 0.27 74.41 

 

Student Group: non-

FRL 

          

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 16.13 0.74 34.57 18.52 0.71 36.15 81.72 0.19 86.40 87.09 0.13 90.26 

MA 16.34 0.74 34.86 18.17 0.7 35.77 94.19 0.06 95.76 94.54 0.06 96.01 

MI 15.33 0.73 33.6 13.84 0.74 32.39 81.71 0.19 86.33 86.61 0.14 90.12 

MO 12.4 0.796 32.3 16.12 0.717 34.03 88.48 0.128 91.69 93.15 0.072 94.95 

OR 16.61 0.72 34.5    79.5 0.2 84.56 82.82 0.17 87.02 

TX 18.03 0.74 36.53 21.1 0.72 39.06 71.56 0.29 78.89 83.42 0.14 87.03 

WA 18.07 0.7 35.6 23.35 0.65 39.48 74.89 0.25 81.16 82.02 0.18 86.4 
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Appendix Table C4. State-by-state numeric results corresponding to Figure 6. 
 Grade-8 Test HS Test Grad Grad +1 

Student Group: Urban           

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 12.27 0.74 30.89 13.41 0.72 31.39 64.79 0.38 74.20 73.66 0.28 80.50 

MA 12.66 0.72 30.76 13.63 0.7 31.1 77.24 0.26 83.74 78.4 0.25 84.53 

MI 10.89 0.75 29.73 7.22 0.77 26.59 63.56 0.37 72.88 71.58 0.3 79.07 

MO 7.78 0.78 27.28 13.39 0.68 30.39 68.01 0.34 76.51 76.62 0.24 82.62 

OR 14.29 0.73 32.65    66.66 0.33 74.85 71.61 0.28 78.57 

TX 13.42 0.74 31.94 14.84 0.74 33.35 53.73 0.53 67.05 74.76 0.26 81.38 

WA 14.59 0.74 33 17.97 0.7 35.54 59.55 0.42 70.16 69 0.33 76.84 

 

Student Group: 

Suburban 

          

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 13.40 0.76 32.39 16.06 0.72 34.20 72.63 0.29 80.06 80.05 0.21 85.26 

MA 13.89 0.77 33.01 15.61 0.73 33.8 88.47 0.14 91.89 88.93 0.13 92.22 

MI 12.84 0.75 31.52 11.63 0.75 30.49 71.88 0.29 79.19 78.29 0.23 84.1 

MO 9.56 0.83 30.31 17.19 0.71 34.94 79.94 0.22 85.44 86.45 0.15 90.2 

OR 14.19 0.74 32.59    69.27 0.31 77.09 73.22 0.27 80 

TX 14.71 0.75 33.5 15.91 0.75 34.72 61.46 0.43 72.26 79.34 0.2 84.4 

WA 15.23 0.73 33.42 19.97 0.68 37.04 64.75 0.35 74.51 74.08 0.26 80.62 

 

Student Group: Rural           

 α β O25 α β O25 α β O25 α β O25 

All 

(Avg) 13.26 0.74 31.64 14.91 0.71 32.74 73.67 0.27 80.41 80.20 0.20 85.08 

MA 14.04 0.75 32.69 15.4 0.72 33.38 89.77 0.11 92.55 90.22 0.11 92.87 

MI 13.76 0.72 31.65 12.47 0.72 30.36 71.96 0.28 78.85 77.98 0.23 83.63 

MO 10.62 0.79 30.37 13.5 0.71 31.25 83.58 0.18 88.08 89.5 0.11 92.25 

OR 13.72 0.68 30.78    69.6 0.28 76.68 72.86 0.25 79.15 

TX 13.25 0.76 32.26 15.32 0.73 33.61 60.9 0.43 71.6 76.03 0.23 81.8 

WA 14.18 0.72 32.08 17.87 0.69 35.11 66.23 0.34 74.71 74.59 0.25 80.78 
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Appendix Table C5. Numeric results corresponding to Figure 8. Coefficient values on 

standardized variables. Statistical significance at the 5 percent level or better is denoted by *. 

Standard errors are suppressed for brevity. 
 Univariate, Grade-8 Test     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School Seg. 

Index 

MA 1.98* 0.02 -2.31* -2.95* -0.86* -2.95* -0.64 

MI 2.36* -1.24* -0.85* -2.09* -3.85* -1.51* -0.21* 

MO 2.11* -1.26* -0.41* -1.78* 0.75* -1.98* -0.69* 

OR 2.54* 0.32 1.67* 0.55 -0.72* 1.24* 1.35* 

TX 0.88* -0.36* -0.73* -1.78* -0.27 0.09 -0.14 

WA 1.29* -0.12 -0.51* -1.36* -0.07 -1.03* 0.65* 

All (Avg) 

† 
1.86 -0.35 -0.48 -2.04 -1.30 -1.15 0.08 

 

 Multivariate, Grade-8 Test     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School Seg. 

Index 

MA 1.99* 1.01* 0.95 -4.85* 0.15 -1.04* 1.56* 

MI 2.18* -0.42 -0.05 -2.24* -1.88* 1.22* 0.39* 

MO 1.92* -0.08 0.60* -1.50* -0.02 -0.34 -0.25* 

OR 2.28* 0.07 1.87* -0.79 -0.13 0.79 0.37 

TX 1.28* -0.44 0.23 -2.20* -0.28 0.30 -0.47 

WA 1.24* 0.07 1.14* -2.31* 0.06 0.60* 0.64* 

All (Avg)† 1.82 0.00 0.85 -3.68 -0.50 0.45 0.27 

 

 Univariate, HS Test     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School Seg. 

Index 

MA 1.63* 0.13 -2.75* -3.40* -1.13* -3.10* -0.97* 

MI 2.68* -2.21* -1.19* -2.86* -4.11* -3.19* -0.48* 

MO 1.59* -0.66* -0.50* -2.44* 1.38* -2.38* -0.41* 

OR        

TX 0.28 -0.61* -0.86* -2.30* -0.18 -0.08 0.03 

WA 0.62* -0.10 -1.39* -2.41* -0.04 -1.30* 0.14 

All (Avg)† 1.36 -0.50 -1.26 -3.46 -1.40 -2.33 -0.26 
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 Multivariate, HS Test     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School Seg. 

Index 

MA 1.58 1.77* 1.60* -6.27* 0.00 -0.80* 1.09* 

MI 1.94* -1.33* 0.07 -2.78* -1.75* 2.11* 0.47* 

MO 1.26* 0.59* 0.60* -2.31* 0.32 -0.61 -0.07 

OR        

TX 0.62* -0.45* 0.49* -2.86* -0.21 0.25 -0.35 

WA 0.59* 0.81* 1.29* -3.46* -0.05 -0.62* 0.12 

All (Avg)† 1.20 0.25 0.70 -5.31 -0.65 0.19 0.13 

 

 Univariate, Grad     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School 

Seg. Index 

MA 1.12* -1.79* -4.08* -5.52* -2.55* -3.27* -4.04* 

MI 4.55* -3.29* -2.93* -5.20* -13.08* -6.75* -0.50* 

MO 1.28* -3.33* -2.55* -3.63* 1.79* -5.18* -2.12* 

OR 0.93 -1.09* 0.91 -2.01* -1.15* -1.76* -0.55 

TX -0.07 -1.51* -1.11* -2.92* 0.82* -1.72* -1.41* 

WA 1.44* -2.07* -1.28* -3.12* -0.93* 0.02 -0.97* 

All (Avg)† 1.54 -1.95 -1.68 -4.92 -4.07 -3.67 -1.53 

 

 Multivariate, Grad     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School 

Seg. Index 

MA 0.62* 0.46 -0.68 -3.79* 0.16 -1.08* -1.27* 

MI 3.71* -0.69 -1.03 -3.56* -10.18* 1.88 0.82 

MO 0.73* -0.46 -0.18 -2.14* -0.31 -0.63 -0.85* 

OR 1.04* 0.50 4.24* -4.55* 0.34 -0.63 -0.99 

TX 0.37 0.02 1.22* -3.36* 0.89* -1.43* -0.19 

WA 1.43* -0.20 2.42* -4.94* -0.17 0.27 0.16 

All (Avg)† 1.32 -0.06 1.31 -7.18 -2.56 -0.48 -0.48 
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 Univariate, Grad+1     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School 

Seg. Index 

MA 1.05* -1.64* -3.93* -5.27* -2.39* -3.20* -3.74* 

MI 3.67* -2.47* -2.91* -4.36* -11.12* -4.90* -0.34* 

MO 1.45* -2.56* -2.06* -2.72* 1.41* -4.15* -1.70* 

OR 0.59 -0.57 0.72 -2.18* -0.88 -1.73* -0.17 

TX 0.02 -0.32 0.50* -0.80* 0.15 -0.93* -0.21 

WA 1.06* -1.81* -0.95* -2.70* -0.69 0.17 -0.61 

All (Avg)† 1.31 -1.39 -1.28 -4.00 -3.58 -2.87 -1.08 

 

 Multivariate, Grad+1     

 Value 

Added 

Pct Black Pct Hispanic Pct FRL Pct IEP Pct Mobile School Seg. 

Index 

MA 0.58* 0.38 -0.77 -3.56* 0.19 -1.11* -0.99* 

MI 2.89* -1.46 -1.41 -3.26* -8.77* 3.42 0.99* 

MO 0.96* -0.08 -0.07 -1.60* -0.20 -0.56 -0.75* 

OR 0.66 0.82 4.17* -4.81* 0.54 -0.58 -0.97 

TX 0.17 0.97* 2.25* -2.21* 0.45* -0.81* 0.11 

WA 1.05* -0.25 2.48* -4.58* 0.04 0.47 0.44 

All (Avg)† 1.05 0.11 1.44 -6.73 -1.73 0.06 -0.32 

Note: † Statistical significance is not reported for the “All (avg)” values because they are not directly generated from 

a regression (they are simple average values of the state-by-state regression coefficients). Note that the multivariate 

regressions also control for the grade-3 school urbanicity category but these coefficients are suppressed for brevity 

(and they prove no new insights beyond what is shown in Figure 6). 
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Appendix Table C6. Numeric results corresponding to Figure 9. 
 Grade-8 Test HS Test Grad Grad +1 

 Correlation of VA with: 

 α β α β α β α β 

All (Avg) 0.36 0.06 0.24 0.02 0.18 -0.14 0.17 -0.13 

MA 0.28 0.21 0.23 0.17 0.17 -0.14 0.17 -0.15 

MI 0.41 0.09 0.42 0.02 0.27 -0.24 0.24 -0.22 

MO 0.37 0.02 0.21 -0.04 0.14 -0.17 0.19 -0.21 

OR 0.47 -0.04     0.13 -0.02 0.08 0.03 

TX  0.32 -0.06 0.23 -0.12 0.14 -0.09 0.15 -0.12 

WA 0.32 0.16 0.11 0.06 0.21 -0.15 0.18 -0.13 
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